
IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Received 13 July 2014; revised 20 December 2014; accepted 14 February 2015; date of publication 5 March 2015;
date of current version 7 December 2016.

Digital Object Identifier 10.1109/TETC.2015.2411215

Data Sweeper: A Proactive Filtering
Framework for Error-Bounded

Sensor Data Collection
DAN WANG1, JIANGCHUAN LIU2, JIANLIANG XU3, HONGBO JIANG4,

AND CHONGGANG WANG5

1Department of Computing, The Hong Kong Polytechnic University, Hong Kong
2School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada

3Department of Computer Science, Hong Kong Baptist University, Hong Kong
4Department of Electronics and Information Engineering, Huazhong University

of Science and Technology, Wuhan 430074, China
5InterDigital Communications, InterDigital Communications, Princeton, NJ 08540 USA

CORRESPONDING AUTHOR: D. WANG (csdwang@comp.polyu.edu.hk)

The work of D. Wang was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61272464 and in part
by the Research Grants Council/General Research Fund under Grant PolyU 5264/13E. The work of J. Liu was supported in part by the
Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, in part by the NSERC Strategic Project

Grant, and in part by the Major Program of International Cooperation through the NSFC under Grant 61120106008.
The work of J. Xu was supported by the Hong Kong Research Grants Council under Grant HKBU12202414 and

Grant HKBU12200114. The work of H. Jiang was supported by the NSFC under Grant 61271226.

ABSTRACT This paper presents data sweeper—a novel framework that attempts to reduce network traffic
for error-bounded data collection in wireless sensor networks. Unlike existing passive filters, a data sweeper
migrates in the network and proactively suppresses data updates while maintaining the user-defined error
bound. Intuitively, the migration of a data sweeper learns the data change of each sensor node on the fly,
which helps to maximize the filtering capacity. We design the data sweeper framework in such a way that it
can accommodate diverse query specifications and be easily incorporated into the existing sensor network
protocols. Moreover, we develop efficient strategies for query precision maintenance, sweeper migration,
and data suppression within the framework. In particular, in order to maximize traffic reduction and adapt
to online data updates, a Lagrangian relaxation-based algorithm is proposed for data suppression. Extensive
simulations based on real-world traces show that the data sweeper significantly reduces the network traffic
and extends the system lifetime under various network configurations.

INDEX TERMS Data sweeper, sensor data collection.

I. INTRODUCTION
Wireless sensor networks have been widely used nowadays
to capture the physical phenomena in a field of interest.
To better understand and analyze the properties of the field,
many sensor applications expect continuous data collection.
For example, scientists may be interested in monitoring the
population distribution of certain nomadic animals in a wild
region; a sensor network deployed in the region thus has to
periodically measure and report the density of the animals
at different locations. In sensor networks, the most limited
resource is energy and communication dominates energy
consumption. Obviously, requesting every sensor node
to report its sensed data is prohibitively expensive.

Thus, various in-network processing techniques have been
proposed; that is, the sensed data can be filtered, merged, and
sampled to reduce the traffic volume [7].

Clearly, with in-network processing, the monitoring results
evaluated based on collected data might deviate from the
exact results. Fortunately, if the error is bounded by a
certain threshold, it is acceptable for many sensor
applications. One well-known technique for error-bounded
data collection is data filtering, which explores temporal data
correlation to suppress data updates. A concrete scheme was
proposed in [18]. The data collection is divided in rounds,
i.e., periodically and each period of time is a round. A filter
is installed on each node and the total filter size is constrained

VOLUME 4, NO. 4, DECEMBER 2016

2168-6750
 2015 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 487

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Wang et al.: Data Sweeper: Proactive Filtering Framework for Error-Bounded Sensor Data Collection

FIGURE 1. An example of a passive filtering scheme. Total user allowed filter size (error bound) is 4. Data readings are
shown above the sensor nodes and filters are shown below the sensor nodes. Node s0 is the base station. Only part of
the network is shown, and the dashed lines with interruption represent multi-hop network connections. (a) Previously
reported data readings. (b) Data readings of the current round. (c) Passive filter suppresses one data report at s1.

FIGURE 2. An example of the data sweeper scheme. Total user allowed filter size (error bound) is 4. Data readings are shown
above the sensor nodes and filters are shown below the sensor nodes. Node s0 is the base station. Only part of the network
is shown, and the dashed lines with interruption represent multi-hop network connections. (a) Data sweeper with whole filter
size. (b) Data sweeper moves and suppresses data reports. (c) All four data reports are suppressed.

by the user-specified error budget. Intuitively, if the data
change from the last update report is smaller than the filter
size, the current update is suppressed, i.e., not to report to
the base station. To adapt to system dynamics, the sizes of
all filters are periodically shrunk and the left-over budget is
re-allocated to the node with the highest load. Recently, there
are many follow up studies, see [5], [24], where hierarchical
routing and energy issues are taken into consideration for
computing the filter sizes for re-allocation. However, the
filters in all these prior studies are passive in the sense that
once installed, each filter sticks to a particular sensor node
and only waits for local data updates for possible suppression.
Since each filter suppresses the local updates only, an intrinsic
problem is that the residual filter size after suppression, if any,
cannot be used by other nodes and hence is wasted. Even
worst, if a filter is violated, its filtering capacity is not utilized
at all.

In this paper, we propose a novel data sweeper to address
this problem. Unlike existing passive filters, a data sweeper,
carrying the error budget, migrates in the network and
proactively suppresses data updates while maintaining the
user-defined error bound. Intuitively, the migration of a data
sweeper learns the data change of each sensor node on the
fly, which helps to fully utilize the filtering capacity. As a
result, traffic reduction can be maximized. We illustrate this
idea through a simple example.
AnExample:We compare the passive filtering scheme and

the data sweeper by the scenario shown in Figs. 1 and 2,
where s0 is the base station. The previously reported sensor
readings and the readings in the current data collection round
are shown in Figs. 1(a) and 1(b), respectively. Suppose that
the total user allowed error bound is 4. One possible filter

allocation is shown in Fig. 1(c). We can see that in the
passive filtering scheme, only one data update at node s1 is
suppressed, and three (remote) updates are incurred. In fact,
the residual filter size at s1 (i.e., 0.7) and the violated filters
at s2 − s4 (i.e., 1) are totally wasted. In contrast, in the
new scheme, a data sweeper is released with the whole filter
size, as shown in Fig. 2(a). It travels the sensor network
and suppresses the data updates on the fly; see Fig. 2(b).
As a result, all four data updates are suppressed; see Fig. 2(c).

One may think that the data sweeper is similar to the
re-allocation of the filters for each data collection round.
Their differences, however, are fundamental. First, in the
passive filtering schemes, the re-computation of the filter
sizes is based on statistical system information collected in
the previous rounds. More importantly, this re-computation is
done before dissemination of the adjusted filter sizes to their
respective sensor nodes. Thus, though all previous efforts
have proposed intelligent schemes in this respect, the online
change of the data updates would make the filter re-allocation
inaccurate. In contrast, the data sweeper makes suppression
decisions on the fly so as to efficiently adapt to the actual data
changes and better exploit the filtering capacity. Second, filter
re-allocation for each collection round would be extremely
costly since it involves the dissemination of the adjusted
filter sizes to their respective sensor nodes. For this reason,
the previous studies have suggested re-allocating filters only
every 50 to 500 rounds [5], [24] to amortize this cost, making
an even larger mismatch between the pre-allocated filter sizes
and actual data changes in each round. Intrinsically, in the
passive scheme, the probability that a filter can match a data
update is small; leading to a waste of the filtering capac-
ity in either the residual filter sizes or the violated filters.

488 VOLUME 4, NO. 4, DECEMBER 2016

Wang et al.: Data Sweeper: Proactive Filtering Framework for Error-Bounded Sensor Data Collection

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

As a result, a large number of data updates can be observed.
This intuition will be formally analyzed in this paper.

To implement the data sweeper for sensor networks, we
propose a lightweight data sweeper framework such that
the migration and behavior of the data sweeper are sepa-
rated from the routing of the data update reports. Thus, the
framework can be easily integrated into the existing sensor
network infrastructure. We then develop a comprehensive set
of models and protocols to maximize the benefit of the data
sweeper:
• A general error bound model which accommodates user
precision requirements for various query types.

• A tour generator which guides the data sweeper to
efficiently migrate in the sensor network.

• A sensor-sweeper interaction module based on
the Lagrangian relaxation which maximizes update
suppression.

• Adata sweeper self-adjustmentmodulewhich adapts the
data sweeper to system dynamics.

We evaluate the effectiveness of the data sweeper through
extensive simulations in ns-2 using both the synthetic data
and the real-world traces obtained from the LEMproject [28].
The results show that the data sweeper substantially outper-
forms the state-of-the-art data filtering schemes under various
network configurations.

The rest of this paper proceeds as follows. We review the
related work in Section II. An overview of the data sweeper
framework is given in Section III. Section IV is devoted
to the detailed design and optimization of the data sweeper
framework. Discussions on accommodating various
extensions are presented in Section V. Simulation results
are reported in Section VI, followed by a final conclusion
in Section VII.

II. RELATED WORK
Wireless sensor networks have been extensively studied in
recent years; a survey can be found in [1]. Many sensor
networks are designed for continuous monitoring
applications. Examples include the sensor network deployed
in Great Duck Island [14] to monitor the habitat of birds and
ZebraNet in Africa [11] to monitor the behavior of wildlife.

In recent years, people have used wireless sensor networks
more widely in civil applications rather than in the wild, such
as structural bridges, energy conserving buildings [12], [19].
These leads to Internet-of-Things, where the sensor networks
from different applications are interconnected. The amount
of data generated are even greater. If all the data are to be
transmitted and analyzed, this poses burden to the sensors on
its energy reserve, the aggregators on transmission congestion
and the analytic devices on the amount of data.

For data collection, a typical routing structure is to
have the base station serve as an interconnection point
between the user and the sensor network. In tree-structured
models [7], [13], data collection is performed through a rout-
ing tree rooted at the base station. In hierarchical models [10],
sensor nodes are grouped into clusters and data are collected

by cluster heads, which in turn report to the base station.
Multi-path [16] and hybrid routing structures [15] have also
been suggested for energy balancing and error resilience
purposes.

Energy efficiency is a key consideration in senor network
designs. A pioneer work [7] has suggested in-network
processing to reduce data traffic in sensor networks.
By exploring the query’s characteristics, in-network
aggregation is used where an intermediate sensor node can
compute a partial result based on the data received from its
descendants. Such aggregate queries as MAX, MIN, AVG,
SUM, and MEDIAN have been studied in [8], [13], and [21].
There are other sensor applications which are interested in the
data distribution information and in favor of non-aggregate
data. For example, a consistent change of the population
distribution of wildlife can serve as an important indication
of the change of the surrounding environment [9]. For these
applications, in-network processing techniques have been
proposed by exploring data correlation. For snap-shot data
collection, network traffic can be compressed based on spatial
correlation, e.g., using clustering [10], sampling [26], or
overhearing techniques [22]. For continuous data collection,
an orthogonal approach is to explore temporal correlation;
which is the focus of this paper. A typical idea is to filter out
data update reports with small changes between consecutive
collection rounds.

A first study on data filtering for continuous queries is [18].
A filter is allocated to each sensor node where the total
filter size is constrained by the user error bound. The filters
periodically shrink and the server will re-allocate the left-over
filter size to the sensor nodes based on a set of parameters,
such as the number of update packets generated by the sensor
node since the last filter re-allocation, the current filter size,
and the data reporting cost. The work in [5] and [24] extends
the filter allocation algorithms to multi-hop sensor networks
with more refined filter allocation schemes. Integration of
different in-network processing techniques to achieve better
performance can be found in [5] and [22].

The above studies of data filtering have explored
data semantics in their algorithm designs, by considering
historical data updates and spatial/temporal data correlations.
However, as pointed out in the Introduction, the filters in
the network are passive and blind to each other; hence the
utilization of them is not optimized. As an improvement,
in this paper we propose an innovative data sweeper that
proactively suppresses data updates. Other works related to
query processing include [3], [23], and [29].

One work has suggested the effectiveness towards this
direction [27]. In [27], a line topology is studied where a filter
is allocated to the leaf node and move upstream. However,
the routing for the data collection is a tree and the general
topology divide the total filter into the leaf nodes of each of
the tree branches (lines) in advance. The allocation of the
filters is still passive and the filters at the leaf nodes are
blind to each other. As a result, the performance gain sharply
reduced. The key observation made in this paper is that we

VOLUME 4, NO. 4, DECEMBER 2016 489

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Wang et al.: Data Sweeper: Proactive Filtering Framework for Error-Bounded Sensor Data Collection

separate the data sweeper and the routing of the data
collection. Thismotivated us to design the fully proactive data
sweeper with the following advantages. First, it has better
performance over all the passive schemes. Second, some
passive schemes (e.g., our preliminary study [27]) request
key statistical parameters to be hard coded. We provide a
self-adjust scheme for the data sweeper and we will show
that the performance is not affected by the initial values
of the parameters. Third, the data sweeper is not affected
by the underlying data routing structure (e.g., tree,
multi-path, etc) or the queries, and thus more generic and
comprehensive. We also show how it can be integrated with
data aggregation queries.

III. ARCHITECTURE OVERVIEW
We first clarify the application scenario. We assume that
sensor networks are deployed to monitor the physical
environments. The sensor must report the physical
phenomena to the base station periodically, i.e., in rounds.
The application allows certain errors for the sensor report.
Between two rounds, the sensor network can conduct
processing on the sensor readings. The objective of such
processing (either the passive filter or data sweeper) is to
minimize energy consumption as long as the allowable error
is satisfied.

A data sweeper is a special control packet that carries query
(precision) information and can be routed within the sensor
network. Upon interacting with a sensor node, it applies the
precision requirements (for example, residual filter size) to
suppress the data update report of the node.

As mentioned, there are two design objectives for the data
sweeper: 1) generic and flexible to accommodate different
query types, precision requirements, and routing structures
for data collection; and 2) energy efficient to maximize
the overall traffic reduction. We thus design a lightweight
data sweeper framework, to accommodate the proactive data
sweeper. This framework sits in the application layer and
interacts with the routing layer (see Fig. 3). The application

FIGURE 3. Data Sweeper framework.

layer (User Queries Register module) accepts continuous
queries registered to the sensor network. During registration,
a query specifies the following information: 1) the query
type, e.g., simple aggregates or complex data distribution
queries; 2) the query duration, e.g., five months; 3) the query
execution period, e.g., every two hours; and 4) the preci-
sion threshold. The routing layer (Data Aggregation/Routing
module) maintains the data collection structure to report the
data.

In the first round of data collection, all sensor nodes report
their readings to the base station. In each subsequent rounds,
a sensor node reports its data only if it is not suppressed.
Specifically, for each round, the data collection is divided
into two phases. In Phase I, every sensor node senses a
new reading and store the reading in its Data Queue. Mean-
while, the data sweeper is released from the base station to
travel through the sensor network. When the data sweeper
reaches a sensor node, it decides whether to suppress the data
update based on the sensor-sweeper interaction algorithm
(to be discussed in detail in Section IV.D). In our design the
algorithm never allows a suppression that violates the user
precision requirement. In Phase II, the data updates that are
not suppressed are reported to the base station through the
underlying data collection structure; in-network aggregation
and other in-network processing techniques can be performed
if necessary. In a data collection round, if the update report
of a sensor node is suppressed, the base station will use
the previously obtained reading from this node for query
evaluation.

It is easy to see that, based on this framework, the user
precision is guaranteed at any round during the continuous
data collection. In addition, our framework is designed in
a way such that the User Query module and Data Routing
module are separated from the data sweeper framework and
remain unchanged. For ease of exposition, in this paper we
employ a tree-based routing structure for data collection.
Note however our framework can accommodate any specific
networking layer implementation and can be adapted to
different routing structures including multi-path routing [16]
and mixed tree-multi-path routing [15]. Similarly, we
mainly focus on the queries that require non-aggregate data
collection (e.g., data distribution queries) to illustrate the
design. Aggregate queries such as SUM are separately
discussed in Section V.

A. ANALYTICAL COMPARISON OF DATA
SWEEPER & PASSIVE FILTERS
Before we go into the detailed design, we first take a look at
the comparison of the performance of the data sweeper and
the passive schemes from a high level point of view. Let the
data change at each sensor node conforms to standard normal
distribution N (0, 1). Let E be the total error bound. Let N be
the total number of sensors.

Consider such passive filtering scheme where the total
error bound is divided equally to each sensor nodes.
Let Xi denote the random variable of the data change at

490 VOLUME 4, NO. 4, DECEMBER 2016

Wang et al.: Data Sweeper: Proactive Filtering Framework for Error-Bounded Sensor Data Collection

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

sensor node i. Since, Xi ∼ N (0, 1), the probability that
the filter at node i is violated is pi = Pr[Xi > E

N] =
1 − Pr[Xi < E

N] =
1
2 (1 − erf(E

√
2N

)) . Define an indicator
variable Yi such that

Yi =
{
1 if Xi > E

N ;

0 otherwise.

Thus, the expectation of a sensor whose filter is violated is
E[Yi] = pi × 1+ (1− pi)× 0 = pi = 1

2 (1− erf(E
√
2N

)).
For data sweeper, we assume that there is a data filtering

scheme such that if the total data change of the system in a
round is greater than the error bound, the sensor nodes whose
data reports are not suppressed are selected randomly and
uniformly by this scheme. In addition, if the total data change
is less than the error bound, all the updates will be suppressed.
Similarly, letXi denote the random variable of the data change
at sensor node i. Let X =

∑N
i=1 Xi. Since Xi ∼ N (0, 1), we

have X ∼ N (0,N). Define an indicator variable Y such that

Y =

{
1 if X > E;
0 otherwise.

Thus, the expectation of a sensor whose filter is violated is
E[Y] = 1

2 (1− erf(E
√
2N

)).
The expected number of link messages (the cost) of the

system is the expected number of messages incurred by vio-
lating the filter of a sensor multiplied by the expectation of
the filter to be violated. The expected number of messages
incurred by violating the filter of each sensor depends on the
underlying data routing structure.We use a tree as an example
to estimate the cost since it is the current dominate data
routing structure for sensor data collection. We emphasize
that the tree is not special, however; other routing structure
will not affect the performance comparison, as given the
routing structure fixed, the expected number of messages
incurred by a sensor is the same under different filtering
schemes. For a standard full k-nary tree, the expected number
of messages for a sensor node to report its data update is
C(k) =

∑logk (N+k−1)
i=1

N+k−1
k i (logk (N + 1)− 1− i).

We also compare our recent work on mobile filter with
the data sweeper. In the mobile filter scheme, the total error
bound is divided into each branch. Let Xi denote the random
variable of the data changes at sensor node i. Let the number
of branches be w. The total number of sensors in each branch

is Zj =
∑N

w
i=1 Xi. Clearly, Zj ∼ N (0, Nw) . Define an indicator

variable Yj such that

Yj =

{
1 if Zj > E

w ;

0 otherwise.

Thus, the expectation of a sensor whose filter is violated is
E[Yj] = 1

2 (1− erf(E
√
2wN

)).
Overall, the expected number of messages of the system

for these three schemes are summarized as follows:E[Yi]× C(k) passive scheme
(E[Y]× C(k)+ N)/N data sweeper
E[Yj]× C(k) mobile filter.

Notice that for data sweeper migration, we add an
additional cost of N. We also want to comment that mobile
filter can also be considered as multiple data sweepers, where
the total error bounds are divided and allocated to eachmobile
filter.

To illustrate the comparison clearly, we plot the numerical
results of these three schemes in Fig. 4.We see that the passive
scheme shows amuch higher total transmission cost. The cost
increases much steeper than the data sweeper. The mobile
filter improves the performance, but did not fully utilize the
benefit.

FIGURE 4. Transmission cost as a function of the number of
nodes N.

B. DISCUSSION ON OVERALL DESIGN CHOICES
We now present some of our high level design choices.
The most important thing is what must be included in the
framework and what are the details that can be further devel-
oped according to different applications.

Our rule of thumb is that in our data sweeper framework,
we do not consider the problems that are related to the data
pattern. In other words, we do not assume prior knowledge of
the data distribution and we also do not consider it is a must
to include learning algorithms into our framework.

We use an example to explain this point. One may easily
consider treating different data updates differently; for exam-
ple, giving greater weights to a bigger update. For example,
given an error bound of 4, and two updates are 3.99 and 0.02
respectively. As we cannot suppress both updates, one may
consider it could be better to suppress the update of 0.02.
An hidden assumption of this is, however, that the data pattern
shows a graduate change (in the order of 0.01) than an abrupt
change (in the order of 1). Without this assumption there is
no reason to suppress the update of 3.99 as compared to 0.02.

Note that the data sweeper outperforms the passive filter
independent to any data distributions.

IV. DATA SWEEPER: DESIGN AND OPTIMIZATION
A. DESIGN CHALLENGES AND PHILOSOPHY
The concrete issues to be addressed for the high
performance of the data sweeper are: 1) the information
that the data sweeper should carry so that it is lightweight;
2) a specific error model for the data sweeper to incorporate

VOLUME 4, NO. 4, DECEMBER 2016 491

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Wang et al.: Data Sweeper: Proactive Filtering Framework for Error-Bounded Sensor Data Collection

queries with different types and precision requirements; 3) the
sensor-sweeper interaction algorithm that maximizes traffic
reduction.

Our first design decision is that the data sweeper will
maintain only the information about the residual filter
size (unused error bound) and some necessary statistical
information. We consider this to be the key to keep our
data sweeper constant in size1 and thus scalable to different
network sizes.

Secondly, to maximize traffic reduction, we design a
sweeper routing algorithm (to determine the traveling tour
of the data sweeper in the network) and a sensor-sweeper
interaction algorithm (to decide whether to suppress a data
update report or not; intuitively the data sweeper may not
suppress a data update if it perceives that it is more beneficial
to save the residual filter size for future data suppression).
Instead of a joint optimization of these two algorithms, we
advocate a separation design due to the following reasons:

1) MULTIPLE QUERIES
It is possible that the data sweeper carries filters for precision
requirements of multiple queries. These queries may employ
different underlying data routing structures (e.g., different
trees, multi-path routing). In this case, a joint optimization
of sweeper routing and sensor-sweeper interaction is
difficult. In addition, new query registration may introduce
complicated re-optimization.

2) ONLINE DATA UPDATES
If data updates are predictable, a joint optimization would
maximize the performance gain. For example, the data
sweeper may not visit the nodes without data changes (i.e., no
sensor-sweeper interaction is needed). As in practice data
updates are online, however, we foresee the benefit of a joint
optimization is largely reduced.

3) OVERHEAD FOR THE DATA SWEEPER
A joint optimization may lead the sweeper routing tour
dynamic based on the residual filter size; that is, the routing
tours may differ given the data sweeper’s current status. Thus,
the data sweeper packet has to carry the tour information,
which introduces an overhead that is proportional to the
network size. This sharply violates our lightweight design
philosophy.

Based on these considerations, we design the data sweeper
such that it contains only the filter parameters. The sweeper
tour will be constructed independent of specific queries. The
sensor-sweeper interaction algorithmwill be developed based
on queries’ error bounds and data collection structures, with
the objective of maximizing overall traffic reduction. The
data sweeper will also carry several statistical parameters of
constant size so that the sensor-sweeper interaction algorithm
can be adjusted each round according to system dynamics.

1The packet size is usually 60 bytes for Mica-2 motes [6].

B. QUERY AND ERROR BOUND MODEL
We first focus on the design for a single query; we shall
discuss the extension to multiple queries in Section V.
To guarantee the precision of query results, an error bound
should be introduced for data collection. TheQuery Processor
module in the data sweeper framework (Fig. 1) converts the
precision requirement to a filter size maintained by the data
sweeper.

In general, our data sweeper works for any error bound
model in which the total error of the data collection is a
function of the errors from individual sensor nodes, such as
Lk distance, weighted Lk distance and KL-divergence. The
data sweeper framework is open for different error bound
models based on specific query requirements. To illustrate
our design, in this paper, we mainly adopt L1 distance
as a measurement of the error bound. The L1 distance is
commonly used for quantifying the (dis)-similarity of data
distributions [2], and is suitable for data distribution queries.
The definition is as follows. Let the true readings of the
sensors be x1, x2, . . . , xn; and let the data seen by the base
station be y1, y2, . . . , yn.2 The L1 distance of these two sets
of readings is L1 =

∑
i |yi − xi|. Thus, if the user-specified

precision threshold is Eu, the continuous data collection must
ensure L1 < Eu.

For simple aggregates such as SUM and AVG, we use a
linear additive error model where E =

∑
i(yi− xi). Thus, for

the user-specified precision threshold Eu, the data collection
should ensure |E| < Eu. This will be further elaborated when
we discuss aggregate queries in Section V.

Note that our error model is a fixed bound. There are
many variances in error modeling, such as probabilistic error
models, weighted error models, etc. These models are heavily
studied in the passive filter scheme. This paper does not try to
be exhausted, and good summarization on error models can
be found in [18], [25], and [31].

C. ROUTING TOUR OF DATA SWEEPER
The routing tour of the data sweeper is built during the initial-
ization phase when the query is registered at the base station.
The calculated next hop information will be maintained by
each sensor node to forward the data sweeper. Our objective
is to travel through every sensor node in the network.3 This
depends on the underlying topology of the sensor nodes.
Below we give one possible scheme for a sensor network
deployed in a grid structure and then generalize it to a random
sensor network. We assume that all the sensor nodes in the
network have the same communication range.

1) TOUR IN A GRID STRUCTURE
Let the sensor network form an N ×M grid with each node
at location aij, i ∈ [0,N) and j ∈ [0,M). We consider

2If the true reading of a sensor is not reported in the current collection
round, its last reported data is seen by the base station.

3Note that when the data sweeper executes, not all sensor nodes are
necessarily to be visited. The data sweeper may terminate earlier due to
various reasons, e.g., use-up of the filter resource.

492 VOLUME 4, NO. 4, DECEMBER 2016

Wang et al.: Data Sweeper: Proactive Filtering Framework for Error-Bounded Sensor Data Collection

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

two cases: 1) N or M is an even number; and 2) N and M
are both odd numbers. In this section, we discuss only the
first case in the interest of space. The routing tour can be
developed for the second case in a similar way.

Assume that each sensor node is able to communicate with
the four adjacent neighbors around it, it can be verified that a
complete tour exists.4 The algorithm in Fig. 5 shows how to
determine the next hop for each node.

FIGURE 5. Tour construction for a N ×M grid where N is even
number.

In our implementation, the sweeper routing tour is
computed by the base station, which broadcasts it to each
sensor node. We choose this strategy as the base station
needs the tour information for important statistics estimation
(see Section IV-E for detailed discussions). Nevertheless, the
cost of the tour construction is only in the initialization phase,
which would be amortized by the long-running continuous
query.

2) TOUR IN A RANDOM SENSOR NETWORK
The routing tour of the data sweeper for a random sensor
network in a rectangular region can be constructed as follows.
Assume that the communication range is R. First, we divide
the sensor network into a virtual grid, with the size of each
grid cell of R

√
2
such that any two nodes in a cell can communi-

cate directly. A routing tour going through these cells can be
constructed using the tour construction algorithm discussed
in the last subsection. Second, for the sensor nodes within a
grid cell, they form a complete connectivity graph since they
all can hear from each other. Thus, a routing tour within the
cell starts from a sensor node and jumps to any unvisited node.
It is easy to prove that there will always be an unvisited node
to choose unless all the sensor nodes have been visited.

We remark that the routing tour of the data sweeper is
different from the routing structure for data collection, which
is built in the networking layer. Furthermore, note that for a
sensor node visited by the data sweeper along this tour, we do
not guarantee that its data update report will be suppressed.

4For a grid with odd number of nodes, some of the nodes need to be able
to communicate with the eight neighboring nodes.

This decision will be made by the sensor-sweeper interaction
algorithm, which will be discussed next.

D. SENSOR-SWEEPER INTERACTION
When the data sweeper arrives at a sensor node, we need
to determine whether to suppress its data update or not.
Suppressing a data update will save the data traffic to report
this update. It also consumes the filter size, which may
restrict future data suppression. We study the trade-off in this
subsection.

We first determine the gain for suppressing a data
update. This is related to the underlying data collection
structure, which is provided by the Routing Information
module (Fig. 3). Given any data collection structure, a sensor
node si is able to compute a gain for suppressing its data to the
base station. We useGi to denote this gain. For non-aggregate
data collection and a tree-based data collection structure,Gi is
equal to the depth of node si in the tree.

The objective of the data sweeper is tomaximize the overall
data reduction spanning the entire query period. Let xij and yij
be the true reading and the last reported reading by node si at
the jth data collection round. Let pij be an indicator variable,
where pij = 1 if the update of si is suppressed in the jth round
and pij = 0 otherwise. We are looking for an assignment
of Ep∗ = [p∗ij] where we can maximize the overall data
suppression while maintaining the error bound for each round
of data collection. Thus, we have

Maximize
∑
ij

pijGi

s.t. ∀j
∑
i

pij|xij − yij| < E

As the sensor readings are known only online, we take
a greedy strategy to solve this problem; that is, we aim to
maximize the gain for each round:

P : Maximize
∑
i

piGi

s.t.
∑
i

pi|xi − yi| < E (1)

We use Lagrangian Relaxation [20] to solve this problem.
Multiply λ > 0 to constraint (1) and take the summation with
the objective function, P can be re-written as:

P′ : L(λ) = max
∑
i

pi(Gi − λ|xi − yi|)+ λE,

λ > 0, pi ∈ {0, 1}

Claim 1: P′ is an upper bound of P.
Proof: Let the optimal solution of P be Ep∗ = [p∗i]. Thus,

L(λ) = max
∑

i pi(Gi − λ|xi − yi|) + λE ≥
∑

i p
∗
i (Gi − λ|

xi−yi|)+λE =
∑

i p
∗
i Gi+λ(E−

∑
i p
∗
i |xi−yi|) >

∑
i p
∗
i Gi,

which is exactlyP; the last inequality comes from the fact that
E >

∑
i p
∗
i |xi − yi| as p

∗
i is a feasible solution to P.

The dual problem is to find an optimal λ∗ tominimize L(λ):

P′′ : minλ≥0 L(λ)

VOLUME 4, NO. 4, DECEMBER 2016 493

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Wang et al.: Data Sweeper: Proactive Filtering Framework for Error-Bounded Sensor Data Collection

First, assume that we know the optimal λ∗ for P′′. The
optimal solution Ep∗ for L(λ∗) in P′ is: if Gi > λ|xi − yi|,
p∗i = 1, otherwise p∗i = 0. Notice that p∗i = 1 indicates that
the data sweeper should suppress the update. Therefore, we
should suppress only when Gi

|xi−yi|
> λ∗. Thus, we develop

the algorithm DataSuppressing as described in Fig. 6.

FIGURE 6. Algorithm: Data Suppression.

In this algorithm, we use a suppression threshold Ts to
represent the optimal λ∗. We have one additional forward
threshold Tf . This Tf restricts the data sweeper from forward-
ing further. The intuition is that if the residual filter size is
smaller than Tf , the data sweeper is unlikely to suppress more
update reports in the remaining part of the sweeper tour.
Er , Ts and Tf are carried by the data sweeper. Note that

here we assume the optimal Ts is known. In the next section,
we will discuss how these parameters are estimated.

E. STATISTICAL INFORMATION
GATHERING AND ESTIMATION
Recall that Ts reflects the optimal λ∗ for problem P′′.
A common technique to solve P′′ (i.e., to obtain this
optimal λ∗) is the subgradient method. We cannot use this
method, however, due to two reasons. First, the subgradient
method requires complete knowledge (of the sensor read-
ings, etc.) so that an iterative search can be conducted for
the optimal solution. This is against our lightweight design
philosophy. Second, the sensor readings are known online.
As a result, the optimal λ∗ of the current collection round is
not necessarily the optimal for the next round. This further
makes the subgradient method unnecessary. In what follows,
let Ts(i) be the suppression threshold used in the ith round.
We develop a heuristic to estimate Ts(i+ 1) to be used in the
next round.

We first take a look at the implication of Ts. If Ts is smaller
than the optimal, it means that the filter size of the sweeper
will be used up early during traveling and Ts should be
increased. On the other hand, if Ts is larger than the optimal,
there will be residual filter size left after traveling throughout
the network and Ts should be decreased.We discuss these two
cases in more detail below.
Case I: The data sweeper stops at sensor node sk and Ts

should be increased in the next round. Node sk will report
this information to the base station by piggybacking in
its data report packet in the Phase II of data collection

(see Section III). Let l denote the number of sensor
nodes in the sweepers’ routing tour that are left unvisited
(the base station can figure out this information easily as it
knows the sweeper tour and the location of sk). We update
Ts(i) =

Ts(i)×N
N−l ; that is, we increase Ts by a factor propor-

tional to the number of sensor nodes visited in the sweeper
tour. Finally, we set Ts(i+ 1) to be the average of the Ts’s of

the previous H rounds, i.e., Ts(i+ 1) =
∑i

j=i−H+1 Ts(j)
H .

Case II: The base station reclaims the data sweeper and
Ts should be decreased. LetEr be the residual filter size. Then
we update Ts(i) =

Ts(i)×(E−Er)
E ; that is, we decrease Ts by a

factor proportional to the Er left. Finally, we set Ts(i + 1)
to be the average of the Ts’s of the previous H rounds, i.e.,

Ts(i+ 1) =
∑i

j=i−H+1 Ts(j)
H .

We next study Tf , the stop condition of the data sweeper.
Intuitively, when the residual filter size is small, the data
sweeper should stop traveling as it would only introducemore
overhead to the system than the gain of suppressing update
reports. Let Tf (i) be the forward threshold of the ith round.
We now develop an adaptive adjustment scheme for Tf (i+1).

Let the height of the data collection tree be D. This is also
the maximum gain of suppressing one data update report.
Intuitively, we hope the data sweeper can suppress at least
one data update report after travelingD steps. In other words,
we would like to know the number of hops the data sweeper
travels before it encounters a data update report with change
smaller than Tf . To figure out this, we introduce an additional
parameter L, which denotes the total number of updates
smaller than Tf (i) in the ith round. Specifically, L is initialized
to 0; as the data sweeper travels along the tour, L increases
for every data update (suppressed or not) that is smaller
than Tf (i). Still, let l denote the number of nodes left unvisited
(l = 0 if the data sweeper returns). Therefore, N−lL denotes
the number of hops before the data sweeper encounters a data
change smaller than Tf (i), and N−l

DL represents the ratio of the
overhead to the gain. We set Tf (i) proportional to this ratio as

Tf (i) =
Tf (i)×(N−l)

DL , and Tf (i+ 1) =
∑i

j=i−H+1 Tf (j)
H .

In the above scheme, L = 0 is possible if the initial value
of Tf is poorly chosen. L = 0 indicates that either 1) Tf is too
small so that no change is less than Tf , or 2) Tf is too large so
that the data sweeper stops traveling in the very beginning.
Thus, if the data sweeper stops at the first node, we set
Tf (i+ 1) = Tf (i)

2 , else we set Tf (i+ 1) = Tf (i)× 2.
In summary, the data sweeper carries the statistical

parameter L, and the algorithm parameters Tf and Ts for
each query. The size of the data sweeper is constant and
independent of the size of the sensor network. Note that
Tf and Ts are adaptively adjusted online. As shown in our
experiments (Section VI), both Ts and Tf are insensitive to
their initial values.

V. FURTHER DISCUSSIONS
We have detailed the designs of the data sweeper. Our
data sweeper and the data sweeper framework are general
enough to accommodate different application requirements.

494 VOLUME 4, NO. 4, DECEMBER 2016

Wang et al.: Data Sweeper: Proactive Filtering Framework for Error-Bounded Sensor Data Collection

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

In particular, its integration with other in-network processing
techniques is possible. In this section, we discuss various
extensions to the basic data sweeper scheme.

1) MULTIPLE QUERIES
Instead of using separate data sweepers, multiple queries can
share one data sweeper to save the migration overhead. For
the queries that evaluate on the same data, e.g., MEDIAN and
SUM of the temperature, they can even share a common filter
size (the most restrictive filter size).

2) PARTIAL SWEEPER TOUR
In the framework, the sweeper routing tour is not necessar-
ily to be a complete path involving all sensor nodes in the
network. In some sensor networks, it is possible that the
updates (or aggregated updates) of certain sensor nodes are
very stable. In this case, it is preferred to put passive filters
on these sensor nodes so as to reduce the migration overhead
of the data sweeper.5 Moreover, a complete path may not be
easily found in some networks.

In these circumstances, one or more partial sweeper
tours can be constructed, and a data sweeper is used for
each sweeper tour. Nevertheless, the parameter adjustment
algorithms of the data sweeper are largely unchanged.

3) INTEGRATION WITH OTHER IN-NETWORK
PROCESSING TECHNIQUES
In Related Work, we discussed three possible in-network
processing schemes: 1) in-network aggregation (e.g., for
SUM query); 2) exploring spatial data correlation (e.g., clus-
tering and sampling techniques); and 3) exploring temporal
data correlation. Our data sweeper proposal falls in the third
category. We now show how to integrate it with spatial data
correlation and in-network aggregation techniques.

For spatial correlation, it can be integrated either with
the Data Queue module or the Data Routing/Aggregation
module in the routing layer (Fig. 1). Specifically, consider
the sampling technique proposed in [26]. The sensor nodes
can first apply the sampling scheme and then save all the
data unsuppressed into the Data Queue module. Since [26]
produces only approximate results, the total error bound
Eu can be split into two sub-error bounds, Es for the sampling
technique and Ed for data sweeper, where Es+Ed ≤ Eu. Next
consider the clustering technique proposed in [10]. The data
sweeper can first suppress the data updates in the Phase I of
our framework (Section III). In the Phase II of data collection,
the Data Routing/Aggregation module can directly apply the
clustering scheme over the unsuppressed data updates.

We use SUM as an example to illustrate the integration
of the data sweeper with in-network aggregation. First, to
bound the error of data collection, we can employ the linear
additive model (see Section IV-A) instead of the L1 model.
In the linear additive model, negative data changes can be
canceled out by positive data changes. The filter size of the

5If the data changes are completely predictable, no filter needs to be used.

data sweeper is initialized to 0. During the touring of the data
sweeper, it is increased by a positive change or decreased by
a negative change. The data update reports are suppressed
as long as the absolute value of the current filter size is
smaller than the given precision threshold Eu. Note that the
linear additive model cannot be used for SUM in passive
filtering schemes. This is because each sensor node has no
knowledge of how other nodes use their filters, which disables
the cancel-out effect and greatly wastes the overall filtering
capability. This again reflects the intrinsic advantage of our
data sweeper. Second, the data sweeper always completes the
routing tour (by fixing Tf = 0). In contrast to the L1 distance
model, where the filter size monotonically decreases during
the touring, with the linear additive model, the filter size may
increase as well. Thus, we anticipate the data sweeper to
suppress more update reports by completing the touring.

4) THE DELAY OF DATA SWEEPER VISITING TOUR
Wewould like to point out that data sweeper introduce a delay
due to the sweeper tour. As, the data sweeper needs to visit all
sensor nodes, such traveling time isO(N). Even if we apply k
multiple sweepers, there is still a delay of O(Nk). The passive
filter schemes do not have such delay.

Nevertheless, we comment that we are working on the
sensor applications where we periodically update the sensor
readings in rounds. The time between rounds is several orders
longer than this sweeper traveling tour. This is because the
natural of sensor network is to monitor the physical worlds.
For example, in our real trace, we are working on the sensor
network of Live from Earth and Mars project of the tem-
perature, dew points etc. The time for physical environment
to change (in the orders of minutes, hours or even days)
dominates the time of the data sweeper tour.

VI. PERFORMANCE EVALUATION
A. SIMULATION SETUP
We have implemented our data sweeper scheme using
ns-2 [17]. The initial energy reserve for each sensor node is set
to 1 Joule. The energy consumption of sending and receiving
a data packet is 24.75mW and 13.5mW [30], and we neglect
the power consumption of the sensor nodes in sleeping state.

We test three different data traces in our simulation.
The first is a synthetic data trace, whose readings are
randomly generated in the range of [0, 10]. The other
two are real-world traces obtained from the Live from
Earth and Mars (LEM) project [28] at the University of
Washington. We used the dewpoint trace and temperature
trace logged by the station at the University of Washington
from August 2004 to August 2005, which consists of more
than 500,000 sensor readings. For illustration purposes, we
plot the first 3000 data points of these traces in Fig. 7.
It can be easily seen that the temperature trace has a larger
variation than the dewpoint trace. We have evaluated our
algorithm against other traces from the LEM project, and
similar performance trends are obtained.

VOLUME 4, NO. 4, DECEMBER 2016 495

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Wang et al.: Data Sweeper: Proactive Filtering Framework for Error-Bounded Sensor Data Collection

FIGURE 7. Dewpoint and temperature traces from LEM project.

We simulate various grid topologies for the sensor
network. The default topology is a 7 × 7 grid. The base
station is by default set to the center node of the network.
The distance between two neighboring sensor nodes is set to
2m and the transmission power on the physical layer is set
to 0.5×10−6dBm.We implement the TAG [13] routing tree as
the data collection structure in the routing layer.We evaluate a
single query only; note that the performance advantage would
be more significant for multiple queries since they can share
the migration overhead incurred by the data sweeper. The
query execution period is set to 10 minutes. For the synthetic
data trace, the default error bound is set at 25, i.e., about 10%
of the expected total change, which is 245. For the dewpoint
and temperature traces, the error bounds are both set at 5.
Since the temperature trace has a larger variation, this means
that the temperature trace has a tighter precision requirement.

For our data sweeper scheme, the initial values of Ts and Tf
are set to 0.2 and 1, respectively. The default value ofH is set
to 10. Since our scheme provide precision guarantee for data
collection, we use lifetime as the major measurement metric
for our system. The system lifetime is set to that of the first
depleted sensor node.

We compare our data sweeper scheme with a state-of-art
passive filtering technique [24], which have shown better
performance as against previous designs [5], [18]. In this
passive filtering technique, all sensor nodes are allocated with
a uniform filter size initially. The base station periodically
re-computes the filter size for each sensor node based on a set
of parameters, including the node’s residual energy, commu-
nication cost, and data changing pattern. A larger filter size
will be given to the sensor nodes with a low residual energy,
a high communication cost, and a high update rate. The new
filter size is broadcasted every 50 rounds, which captures the
balance between the overhead of this re-allocation and the
adaptation to system dynamics [24]. We also compare with
themobile filter scheme [27]. In mobile filter scheme the total
filter is allocated to the leaf nodes. The filters can be piggy-
backed with the data update reports. Thus, the performance
is better than the passive scheme [27]. Notice, however, this
improvement comes with the inflexibility that it is only work-
able with a tree structure for routing the data update reports.
Both our data sweeper and the passive filtering scheme are

not affected by the underlying routing structure. Nevertheless,
we employ the tree structure in our simulation so that the
comparison can be made.

FIGURE 8. Lifetime as a function of precision settings for
synthetic data.

B. SIMULATION RESULTS
We first evaluate the effect of precision settings (total filter
size) of E . We show the network lifetime results for the
synthetic data trace in Fig. 8, where the x-axis denotes the
ratio of the filter size setting to the expected data change
(i.e., ˜ 250). We first observe that the data sweeper always
performs better than the passive filtering scheme. Second,
the lifetime of data sweeper improves quickly after the ratio
of the filter size to the expected data change is above 0.4.
After the ratio reaches 0.8, its lifetime flattens out. This
is because the data sweeper can suppress almost all data
updates; and the system is constrained only by the migration
overhead incurred by the data sweeper. The passive filtering
scheme, on the other hand, improves its lifetime slowly before
the ratio is 1.2. Even when the ratio is 1.8, the performance
of passive filtering is still lower than that of the data sweeper.
This is explained as follows. First, theoretically speaking,
when the ratio is larger than 1, in expectation the total filter
size is able to suppress all the data updates, which is the
case of the data sweeper. In the passive filtering scheme,
however, as the total filter size is divided into smaller ones
fixed to the sensor nodes, the data update variation still incurs
many data updates unsuppressed even when the ratio is large.
Second, the overhead incurred by the data sweeper is one
packet sending and one packet receiving for each node in the
sensor network; the energy consumption is balanced among
all nodes. In contrast, in the passive filtering scheme, the
sensor nodes near to the base station are hotspots. As long
as there are non-suppressed update reports, these nodes will
be involved to relay update reports, thereby deteriorating the
network lifetime.

As for mobile filter, the performance is generally better
than the passive filtering scheme; this confirms the
results in [27]. Our data sweeper prevails as the mobile
filter still faces the problem where the total filter size has
to be divided and allocated to the leaf nodes. In addition,
the mobile filter has larger overhead on the hotspots near the
base station, making its performance worse than the passive

496 VOLUME 4, NO. 4, DECEMBER 2016

Wang et al.: Data Sweeper: Proactive Filtering Framework for Error-Bounded Sensor Data Collection

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

filtering scheme when the total filter size is very big; this is
also observed in [27].

FIGURE 9. Lifetime as a function of precision settings for
dewpoint trace.

For real-world traces, we show the result in Fig. 9, where
the filter size is changed from 0 to 100.6 As can be seen, the
performance of data sweeper improves fast when the filter
size is above 20. The passive filtering scheme approaches the
data sweeper as the filter size goes towards 100. Based on
the study in the synthetic data trace, this indicates that at a
filter size of around 100, the system reaches a stage where
almost all data updates are suppressed. We set the same filter
sizes to evaluate the performance for the temperature trace.
In Fig. 10, we can see that there is still a large performance
gap between the passive filtering and data sweeper when the
filter size is 100. This is because the temperature trace has a
larger data variation as shown in Fig. 7.

FIGURE 10. Lifetime as a function of precision settings for
temperature trace.

In real applications, we believe that the results may not be
meaningful for very large filter sizes (i.e., very low precision)
where most updates are suppressed. Therefore, in the rest of
this paper, we will focus on small and moderate filter sizes.

We show the effect ofH, the number of previous rounds for
the calculation of Ts and Tf , in Figs. 11, 12, and 13. We can
see that, although small, a largerH generally leads to a better
estimation of Ts and Tf and improves the system lifetime.
AsH only incurs overhead of small memory space in the base
station, we set H to be 10 for the rest of the experiments.

6We do no plot the filter size in terms of the ratio to the average data update
as the updates do not follow a regular pattern in real traces.

FIGURE 11. Lifetime as a function of precision settings for
synthetic data.

FIGURE 12. Lifetime as a function of precision settings for
dewpoint trace.

FIGURE 13. Lifetime as a function of precision settings for
temperature trace.

FIGURE 14. Lifetime as a function of the number of nodes for
synthetic data.

We next study the effect of the network size. Fig. 14 shows
the performance for grid topologies with different number
of nodes. It can be seen that the network lifetime decreases
when the network size increases. This is because with

VOLUME 4, NO. 4, DECEMBER 2016 497

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Wang et al.: Data Sweeper: Proactive Filtering Framework for Error-Bounded Sensor Data Collection

a fixed precision requirement, a larger network allocates less
filters to each node on average. The data sweeper performs
consistently better than the passive filtering scheme by at
least 20% - 30% to as much as 80%. It also outperforms
mobile filter scheme for a margin of a 5% to 20%. Similar
trends are observed for the dewpoint and temperature traces
in Figs. 15 and 16.

FIGURE 15. Lifetime as a function of the number of nodes for
dewpoint trace.

FIGURE 16. Lifetime as a function of the number of nodes for
temperature trace.

We next examine the setting of the parameters Ts and Tf
of our data sweeper and evaluate our statistical parameter
adjustment schemes. In Fig. 17, the x-axis represents Ts, and
D-0.2 and D-1 denote that Tf is initially set to 0.2 and 1.
We also show the results where the values of Ts and Tf are
both fixed throughout the simulation (denoted by D-0.2-Fix
and D-1-Fix). First, we can see that Ts has a higher impact
than Tf as different Ts’s result in larger fluctuation in lifetime.
This is because Tf is used mainly for control the overhead

FIGURE 17. Lifetime as a function of Ts for synthetic data.

of forwarding the data sweeper, whereas Ts has directly
impact on data suppression decisions. Obviously the data
traffic dominates system lifetime. Second, setting Ts = 1 and
Tf = 0.2 fixed achieves the best performance among all
settings tested, i.e., 1200 rounds. These values, however,
depend on the trace data and are difficult to know in advance.
Our statistical parameter adjustment scheme performs close
to the best performance and is insensitive to the initial settings
of Tf and Ts, i.e., for all the initial values of Ts and Tf
tested, our scheme consistently has a lifetime of 1050 rounds.
Similar effect is observed in other traces (See Figs. 18 and 19).
These show the very desirable self-adjustable feature of our
scheme.

FIGURE 18. Lifetime as a function of Ts for dewpoint trace.

FIGURE 19. Lifetime as a function of Ts for temperature trace.

We next study the impact of different underlying
topologies. We place the base station at different positions
of the network. In all topologies, the TAG tree is employed
as the data collection structure. The results are shown
in Figs. 20, 21, and 22. The network lifetime is the longest
when the base station is at the center of the grid. This is
not surprising, as the lifetime of a sensor network is usually
constrained by the sensor nodes near to the base station.
Setting the base station at the corner of the network will make
the system more stressed. Nevertheless, we can see that the
relative performance of passive filtering and data sweeper is
hardly affectedly by the underlying topology.

C. RESULTS FOR AGGREGATION
In this section, we further study the effect of the data sweeper
with in-network aggregation. We perform data collection for
SUM queries. To have a fair comparison, the passive filtering

498 VOLUME 4, NO. 4, DECEMBER 2016

Wang et al.: Data Sweeper: Proactive Filtering Framework for Error-Bounded Sensor Data Collection

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

FIGURE 20. Lifetime for different underlying routing topologies
for synthetic data.

FIGURE 21. Lifetime for different underlying routing topologies
for dewpoint trace.

FIGURE 22. Lifetime for different underlying routing topologies
for temperature trace.

scheme is also integrated with in-network aggregation [24].
As the mobile filter scheme does not apply for aggregation,
we omit the comparison with it.

In Fig. 23, we plot the results for both the default 7×7 grid
and a 9×9 grid.When the filter size is very small (with a ratio
of 0.04 to the expected update), the passive filtering scheme
performs better for the default grid. In this case, most data
packets are not suppressed by the filter, but by in-network
aggregation. Therefore, the overhead of the data sweeper is
perceptible. As the filter size increases, the improvement of
the data sweeper becomes clearer. As discussed in the last
section, a larger network size results in a worse performance
with the same filter size setting. However, it is surprising
to see that the data sweeper achieves a better performance
for the 9 × 9 grid than the 7 × 7 grid. By looking into the
simulation, we find that a significant portion of the benefit for

FIGURE 23. Lifetime as a function of precision settings for
synthetic data with aggregation.

the data sweeper comes from the fact that it is able to cancel
out the positive and negative data updates during in-network
processing. Given the same precision ratio, a larger network
has a larger total filter size, and offers more such cancel-out
opportunities.

For the dewpoint trace, as shown in Fig. 24, still, the data
sweeper outperforms the passive filtering scheme for all large
filter sizes. In contrast to the synthetic data trace, the data
sweeper has a better performance for the 7× 7 grid than the
9×9 grid. This is because we use fixed total filter sizes. As the
filter size increases, both schemes improve and the data
sweeper has a larger improvement than the passive filtering.
This again implies the scalability of our data sweeper scheme.
The result for the temperature trace is shown in Fig. 25.
The gain of the data sweeper is smaller, as the temperature

FIGURE 24. Lifetime as a function of precision settings for
dewpoint trace with aggregation.

FIGURE 25. Lifetime as a function of precision settings for
temperature trace with aggregation.

VOLUME 4, NO. 4, DECEMBER 2016 499

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Wang et al.: Data Sweeper: Proactive Filtering Framework for Error-Bounded Sensor Data Collection

trace has a larger variation as shown in Fig. 7. From these
results, for aggregate queries with very small filter sizes, it
could be an interesting future work to study a hybrid scheme
with the data sweeper travels a partial tour and the passive
filters allocated on bottleneck nodes.

VII. CONCLUSION
Existing in-network processing techniques for continuous
sensor data collection, such as filtering, work passively with
data collection, i.e., the filter sticks to a sensor node and
suppresses the data updates on this node only. In this paper,
we suggested a fundamentally novel scheme called data
sweeper that proactively migrates and suppresses traffic in
the sensor network. This scheme, implementing through a
lightweight data sweeper framework, offers two significant
benefits: 1) The data sweeper migrates in the network and has
a better knowledge of the data updates on the sensor nodes.
Thus, it is able to suppress significantly more data traffic and
balances the energy consumption; 2) The data sweeper works
asynchronously with data collection; making this framework
generic and flexible, and thus well suits diverse query types
and data collection structures.

We demonstrated a concrete design for shifting filtering
operations to the data sweeper framework, and developed
a comprehensive set of algorithms for sweeper touring,
sensor-sweeper interaction, and sweeper self-adjustment.
Through both analysis and experiments, we showed that great
performance benefit is achieved.

REFERENCES
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, ‘‘A survey

on sensor networks,’’ IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114,
Aug. 2002.

[2] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White, ‘‘Testing
that distributions are close,’’ in Proc. IEEE FOCS, Redondo Beach, CA,
USA, Nov. 2000, pp. 259–269.

[3] M. Z. A. Bhuiyan, G. Wang, J. Cao, and J. Wu, ‘‘Energy and bandwidth-
efficient wireless sensor networks for monitoring high-frequency events,’’
in Proc. 10th IEEE SECON, New Orleans, LA, USA, Jun. 2013,
pp. 194–202.

[4] D. Chu, A. Deshpande, J. M. Hellerstein, andW. Hong, ‘‘Approximate data
collection in sensor networks using probabilistic models,’’ in Proc. 22nd
IEEE ICDE, Atlanta, GA, USA, Apr. 2006, p. 48.

[5] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos, ‘‘Hierarchical
in-network data aggregation with quality guarantees,’’ in Proc. EDBT,
Heraklion, Greece, Mar. 2004, pp. 658–675.

[6] C. T. Ee et al., ‘‘A modular network layer for sensorsets,’’ in Proc. 7th
USENIX OSDI, Seattle, WA, USA, Nov. 2006, pp. 249–262.

[7] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, ‘‘Next century
challenges: Scalable coordination in sensor networks,’’ in Proc. 5th ACM
MOBICOM, Seattle, WA, USA, Aug. 1999, pp. 263–270.

[8] M. B. Greenwald and S. Khanna, ‘‘Power-conserving computation of
order-statistics over sensor networks,’’ in Proc. ACM PODS, Paris, France,
Jun. 2004, pp. 275–285.

[9] T. He, S. Ben-David, and L. Tong, ‘‘Nonparametric change detection and
estimation in large-scale sensor networks,’’ IEEE Trans. Signal Process.,
vol. 54, no. 4, pp. 1204–1217, Apr. 2006.

[10] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, ‘‘Energy-
efficient communication protocol for wireless microsensor networks,’’ in
Proc. 33rd HICSS, Wailea Maui, HI, USA, Jan. 2000, pp. 3005–3014.

[11] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
‘‘Energy-efficient computing for wildlife tracking: Design tradeoffs and
early experiences with ZebraNet,’’ in Proc. ACM ASPLOS, San Jose, CA,
USA, Oct. 2002, pp. 96–107.

[12] X. Liu, J. Cao, S. Tang, and P. Guo, ‘‘A generalized coverage-preserving
scheduling in WSNs: A case study in structural health monitoring,’’
in Proc. IEEE INFOCOM, Toronto, ON, Canada, Apr./May 2014,
pp. 718–726.

[13] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, ‘‘TAG: A tiny
aggregation service for ad-hoc sensor networks,’’ in Proc. USENIX OSDI,
Boston, MA, USA, Dec. 2002, pp. 131–146.

[14] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson,
‘‘Wireless sensor networks for habitat monitoring,’’ in Proc. ACM WSNA,
Atlanta, GA, USA, Sep. 2002, pp. 88–97.

[15] A. Manjhi, S. Nath, and P. B. Gibbons, ‘‘Tributaries and deltas: Effi-
cient and robust aggregation in sensor network streams,’’ in Proc. ACM
SIGMOD, Baltimore, MD, USA, Jun. 2005, pp. 287–298.

[16] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson, ‘‘Synopsis diffu-
sion for robust aggregation in sensor networks,’’ in Proc. ACM SENSYS,
Baltimore, MD, USA, Nov. 2004, pp. 250–262.

[17] The Network Simulator ns-2. [Online]. Available: http://www.isi.edu/
nsnam/ns/

[18] C. Olston, J. Jiang, and J. Widom, ‘‘Adaptive filters for continuous queries
over distributed data streams,’’ in Proc. ACM SIGMOD, San Diego, CA,
USA, Jun. 2003, pp. 563–574.

[19] D. Pan, D. Wang, J. Cao, Y. Peng, and X. Peng, ‘‘Minimizing building
electricity costs in a dynamic power market: Algorithms and impact on
energy conservation,’’ in Proc. 34th IEEE RTSS, Vancouver, BC, Canada,
Dec. 2013, pp. 107–117.

[20] C. R. Reeves, Modern Heuristic Techniques for Combinatorial Problems.
New York, NY, USA: Halsted, Apr. 1993.

[21] N. Shrivastava, C. Buragohain, S. Suri, and D. Agrawal, ‘‘Medians and
beyond: New aggregation techniques for sensor networks,’’ in Proc. ACM
SENSYS, Baltimore, MD, USA, Nov. 2004, pp. 239–249.

[22] A. Silberstein, R. Braynard, and J. Yang, ‘‘Constraint chaining:
On energy-efficient continuous monitoring in sensor networks,’’ in
Proc. ACM SIGMOD, Chicago, IL, USA, Jun. 2006, pp. 157–168.

[23] S. Tang and J. Wu, ‘‘Qute: Quality-of-monitoring aware sensing and
routing strategy in wireless sensor networks,’’ in Proc. MobiHoc, 2013,
pp. 119–126.

[24] X. Tang and J. Xu, ‘‘Extending network lifetime for precision-constrained
data aggregation in wireless sensor networks,’’ in Proc. IEEE INFOCOM,
Barcelona, Spain, Apr. 2006, pp. 1–12.

[25] X. Tang and J. Xu, ‘‘Optimizing lifetime for continuous data aggregation
with precision guarantees in wireless sensor networks,’’ IEEE/ACM Trans.
Netw., vol. 16, no. 4, pp. 904–917, Aug. 2008.

[26] D. Wang, Y. Long, and F. Ergun, ‘‘A layered architecture for delay sen-
sitive sensor networks,’’ in Proc. IEEE SECON, Santa Clara, CA, USA,
Sep. 2005, pp. 24–34.

[27] D. Wang, J. Xu, J. Liu, and F. Wang, ‘‘Mobile filtering for error-bounded
data collection in sensor networks,’’ in Proc. IEEE ICDCS, Beijing, China,
Jun. 2008, pp. 530–537.

[28] (2006). Live From Earth and Mars (LEM) Project. [Online]. Available:
http://www-k12.atmos.washington.edu/k12/grayskies

[29] X. Xu, X.-Y. Li, P.-J. Wan, and S. Tang, ‘‘Efficient scheduling for peri-
odic aggregation queries in multihop sensor networks,’’ IEEE/ACM Trans.
Netw., vol. 20, no. 3, pp. 690–698, Jun. 2012.

[30] W. Ye, J. Heidemann, and D. Estrin, ‘‘An energy-efficient MAC protocol
for wireless sensor networks,’’ in Proc. IEEE INFOCOM, New York, NY,
USA, Jun. 2002, pp. 1567–1576.

[31] Y. Zhang, ‘‘Evaluating continuous probabilistic queries over constantly-
evolving data,’’ M.S. thesis, Dept. Comput. Sci., Univ. Hong Kong,
Hong Kong, 2010.

DAN WANG received the B.Sc. degree from
Peking University, Beijing, the M.Sc. degree
from CaseWestern Reserve University, Cleveland,
OH, and the Ph.D. degree from Simon Fraser
University, Vancouver, Canada, all in computer
science. He is currently an Associate Professor
with the Department of Computing, The
Hong Kong Polytechnic University, Hong Kong.
His research interest includes wireless sensor
networks, internet routing, and applications.

500 VOLUME 4, NO. 4, DECEMBER 2016

Wang et al.: Data Sweeper: Proactive Filtering Framework for Error-Bounded Sensor Data Collection

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

JIANGCHUAN LIU was an Assistant Profes-
sor with the Chinese University of Hong Kong,
from 2003 to 2004. He is currently a Full
Professor with the School of Computing Sci-
ence, Simon Fraser University, BC, Canada.
He was also an NSERC E. W. R. Steacie
Memorial Fellow, and an EMC-Endowed Visiting
Chair Professor with Tsinghua University, Beijing,
China, from 2013 to 2016.

He received the B.Eng. (cum laude) degree in
computer science from Tsinghua University, Beijing, China, in 1999, and the
Ph.D. degree in computer science from the Hong Kong University of Science
and Technology, in 2003. He was a co-recipient of the ACM TOMCCAP
Nicolas D. Georganas Best Paper Award in 2013, the ACM Multimedia
Best Paper Award in 2012, the IEEE Globecom 2011 Best Paper Award,
and the IEEE Communications Society Best Paper Award on Multimedia
Communications in 2009.

His research interests include multimedia systems and networks, cloud
computing, social networking, online gaming, big data computing, crowd-
sourcing, wireless sensor networks, and peer-to-peer networks. He has
served on the Editorial Boards of the IEEE TRANSACTIONS ON BIG DATA,
the IEEE TRANSACTIONS ON MULTIMEDIA, the IEEE COMMUNICATIONS SURVEYS

AND TUTORIALS, the IEEE ACCESS, the IEEE INTERNET OF THINGS JOURNAL,
Computer Communications (Elsevier), and Wireless Communications and
Mobile Computing (Wiley).

JIANLIANG XU received the B.Eng. degree
in computer science and engineering from
Zhejiang University, Hangzhou, China, and the
Ph.D. degree in computer science from the Hong
Kong University of Science and Technology.
He held visiting positions with Pennsylvania State
University, State College, PA, USA, and Fudan
University, Shanghai, China. He is currently a
Professor with the Department of Computer
Science, Hong Kong Baptist University (HKBU).

He has authored over 150 technical papers in these areas. His research inter-
ests include data management, mobile/pervasive computing, and networked
and distributed systems. He was a recipient of the IEEE ICDE Outstanding
Reviewer Award in 2010, and the HKBU Faculty Performance Award for
Outstanding Young Researcher in 2012. He has served on the Editorial
Boards of the IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

and the International Journal of Distributed Sensor Networks. He was the
Vice Chairman of the Hong Kong Chapter of Association for Computing
Machinery.

HONGBO JIANG received the B.S. and
M.S. degrees from the Huazhong Univer-
sity of Science and Technology, China, and
the Ph.D. degree from Case Western Reserve
University, in 2008. He joined the faculty of
Huazhong University of Science and Technology,
where he is currently a Full Professor. His research
concerns computer networking, in particular,
algorithms and protocols for wireless networks
and mobile computing.

CHONGGANG WANG received the
Ph.D. degree from the Beijing University of Posts
and Telecommunications, China, in 2002. He is
currently a member of the Technical Staff of
InterDigital Communications with focuses on
Internet of Things (IoT) research and develop-
ment activities, including technology development
and standardization. His current research interest
includes IoT, mobile communication and comput-
ing, and big data management and analytics. He is

a Founding Editor-in-Chief of the IEEE INTERNET OF THINGS JOURNAL, and on
the Editorial Board of several journals, including the IEEE TRANSACTIONS ON

BIG DATA and the IEEE ACCESS. He is also the IEEE ComSoc Distinguished
Lecturer from 2015 to 2016.

VOLUME 4, NO. 4, DECEMBER 2016 501

